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1. INTRODUCTION

This report contains the results of a study of uniform two-zone perfect
gas expansions in convergent~divergent nozzles. This study was performed by

TRW Systems Group for NASA (MSC) under contract NAS 9-4358, Improvement of

Analytical Predictions of Delivered Specific Impulse.

The objective oi this contract was to develop a family of four computer
prograns to calculate inviscid, one-dimensional and axisymmetrie nonequilibrium
nozzle flow fields accounting for the nonequilibrium effects of finite rate chemical
reactions between gaseous combustion pfoducts and velocity and tnermal lags between

gaseous and condensed combustion products.
The four programs developed under this contract are:

® A one-dimensional program which calculates the equilibrium,
frozen and kinetic performance of propellant gysteme having
gaseous exhaust products containing the elements carbon,
hydrogen, oxygen, nitrogen, fluorir - cr. chicrine.

e A one-dimensional program ~%ich calculates the equiiibrium,
frozen and kinetic performance of systems having gaseous and
condensed exhaust products ccntaining the elements carioa,
hydrogen, oxygen, nitrogeu, fluorine, chlorine and one m=. =1
element, either aluminum. beryilium, boron or lithium. -

e An axisymmetric program . calculates the kinetic por-
tormance of propellant s=stems having gasecus exhaust p+ .- .ots
containing the elements ca-bon, hydrogen, oxygen, rit:-~ ..., ’
fluorine and chlorine. On ~piion, this program consi-.::

either the expansion of a uniforn mixture (the ideal S e:ne
case) or of a two-zoned mixtursz ‘the film cooled 2+ - case).

® An axisymmetric program which calcuixzies ctng Win. :: per~
formance of propellant systems having gasecus av? condensed
exhaust products containing the elements carbon. hydrogen,
oxygen, nitrogen, fluorine, chlorine and one me¢izi element,
either aluminum, beryllium, boron or lithium. ZThis program
considers only the expausion of a uniform mixture (the ideal
engine case). S : i

These programs differ in a number of ways from previous programs developed °
to calculate nonequilibrium nozzle expansions. s
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In particular:

® ne proerams are completely self-contained, requiring specifi-
cacion of only the propellant system (elemental compcsition
and heat of formation), relaxation rates and nozzle geometry
to ru a case.

¢ The chemical species considered by the p.ograms have been
selected to allow accurate equilibrium, frozen and kinetic
performance analyses of cryogenic, space storable, prepackaged,
hybrid and solid propellant systems of current and projected
operational use.

e All dissociation-recombination and binary exchauz: :ieactions
between the gaseous species present in the exhaust are con-
side -ed by the programs allowir_ complete kinetic exwpansion
calculations.

¢ The programs utilize TRW Systems' implicit integration method
which allows rapid integration of the chemical and gas-particle
relaxation equations from equilibrium chamber conditions.
Typical run times are three minutes for the ons-dlirensional
programs and ten minutes for the axisymmetric programs on zan
IBM 7094 Mod II computer.

¢ The programs-allow anzlysis of the performance loss associzted
with film coc ing in propellant systems having all gaseous
exhaust products.

© The programs allow simultanecus consideration of both chemical
and gas-particle relaxation losses in propellarit systems
having condensed exhaust products.

& The one-dimensional programs allow equilibrium, frozen and
kinetic performance talculatinns to be performed during a
single machine run.

o The prograws are written in machine independent language
(FORTRAN IV), allowing taeir use on all standard computer-

The study described in this report was performed to determine the appropriate
transoaic initial conditioms for the two axisymmetric characteristic programs -
developed under NASA (MscC) contract NAS 9-4358. Since the study resulted”in a new- of' <§

. method of analyzing both uniform and two-zoneé convergent-divergent rvzzle flows ) ;
and revealed the nature and interrelationship of previous nozzle analyses, the

. results of this study are believed to be of sufficient general ,nterest to merit -
publication as a _separate contract report. The results of th:e study are pre- :

gscented in the following sections without refarence to their uae in the axisymmetric ’

programs,




2. UNTIFORM EXTANSIONS

Lovaily?

The equations governing the inviscic isentropic expansion c¢f a perfect

ges through a convergzeut-divergent nozzle are

.2 =1 2 38u 2 y-1 2 dv Y=1, 2 | 2. wv
& Lo v) x + (1 ; V1 u ) 3y + [1 Y_H(u + v)] -
4 Ju
T Wy =0 (2-1)
2.2 -9 (2-2)
o ?y

where the velocities have been normalirzed with respect to the throat sonic velocity
and -~ equals § or 1 depending on whether the nozzle is planar or axisymmetric.
In seeking solutions of the above equations, it is desirable to choose s set of
aon~dimensional ccordinates such that the various wvelocity derivatives are
Independent of the nozzle scale. For large values of the normalized throat wall
radius of curvature, the fleow velocities asymptotically apprcach those obtained

l’ froa the one-dimensional channcl flow equations. It can be shown from the channel

flecw equations (see Appencdix A) that for choked £lows

U=l+//"w:ﬂ:

) e (2-3)

|
Eile

at tae nozzle thyoat, where x is the distance from the throat plane, y* is the
throat alf height, and R is the normalized throat wa:l radius cf curvature.
Examination of this equztior reveals that the axial nozzle coordin . x must be
normalized with respect to the distance ¥ R y* in order for the dimensionless
axial velocity gradient to remain of order one at the nozzle throat independent of
the nozzle scale. Cince the nozzle scale nerpendicular to the nozzle s«is is

set by the throat half height y*, it 18 apparent that the perpendicular coordinate
v shculd be normalized with respect te the distance y*. Thus, solutions of the

above equations should te sought in terms of the normalized coordinates

z = /% ;‘—* (2-4)

; r = & (2-5)

2-1



[y

rather than in the X,y coordinate system for large values of the normalized

throat wall radius cf curvature.

The apove sxial coordirate choice differs from Hall's(’L> by a factor
3%% R, since the axial coordinate used by Hall is
wtl X
zy = —"—Y+l R ;;; (2-6)

As will be shown later, the above choice results in the present solution being
uniformly valid for all (subsonic, transonic and supersonic) nozzle flow regimes,
whiile Hall's choice limits the validity of his solution to the traasonic throat

region,

In the r,z coordinate system, the above equations become

/ _ 1 2 3u _ .2 x v _Xx1, 2 2, wv
4 du
o — y — = {2—
e uv 3y 0 (2-7)
1 3 _3u _ -
//F; 3z  dr 0 (2-8)

The boundary conditions are

v(o,z) = 0 (2-9)
and
Z_(;rl’_z_)_ - /1 51 (2-10)
u(r ,z) R dz
w
At the nozzle throat,
2
r, = 1 +vii + ...
zZ
= 1 +-5— + ... (2-11)

dr
for all throat sections. Thus, both u and EEE are 0(1) at the throat and v must

be O(R -1/2

expansions in inverse power of R, i.e.,

). This suggests that the velocity components can be expressed as
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u, (r,z) uz(r,z)

= + —= + + ... 2-12
u uo(r,z) R Rz (2-12)
/—I vl(r,z) vz(r,z)
v o=/ R [vo(:,z) + R + 5 + ] (2-13)
R

Substituting into equations (2-7) and (2-8) and equating powers of Rnl separately

ylelds two sets of equations:

.. .
2y "To | Y- l 2 o 0) _ _
(l - Y% ) z ' (1 Y+l )(3r Ty =0 (2-14)
Buo
= = 0 (2-15)
du v wv Ju
_ 2) n _x-1 2 n n 4 n _ -
(1 Yo sz + (l v+1 uo ) (Br + r y+1 Yo vo 3Ir ¢n‘ nzl (2-16)
Svn 1 8un
—_— = n -1
32 o 0 nzl (2-17)
where
du
= X1l 2, o 2 ol =1 o
o = (2up +5Ev % 52 (vo +21d 1}3r M(zu ay v ) (2-18)
y-1 y-1 2 avo
= 2 -9 = —
¢2 (Zuouz + u1 + o) v v-) +[2v v, + Y_'_1(2\1‘0112 + vy )] py
x=1 2 -1 212% 2,11 vy
+ Y+i«2uou2 + Y F 2v v ) + (Zu up v+l vo )s-z—- +(vo +2 v+l uoul ar
¥-1 o - -
+ Y1 2uou1 v, ) - Y+1[u v, +u 1Y )3 (2-19)
From equations (2-9), (2-10), (2-12) and (2-13), it is fourd tnat the bdoundary
conditions are
vn(o,z) = 0 nx0 (2-20)
and drw .
vn(rw,z) =u (r $Z) T 1 n20 (2-21)



Lquation (2-15) shows that uo(r.z) is a function crf z alone. Thus,

uo(r,z) ao(z) (2-22)
Equation (2-14) is satisfied if vo(r.z) is of the form,

vo(r,z) = al(Z)r + '~c~a3(z)r—l + (1 ~w) as(z) (2-23)

from the axis and wall boundary conditions [equations (2-20) and (2-21)], it is

easily shown ther

aO drw
SRR (2-26)
W
a, = 0 (2-25)
ag - 0 (2-26)

Substituting th2 above results into equatiom (2-14) yields

:l - 2 Ef9-+ (w + 1) [1 -1 a 2 ig,ifﬂ = 0 (2-27)
: a, ! dz ! Y+l o rw dz N

which is the one-dimensional channel flow equation. The solution of the above
equations defines the one-dimensional velocity distribution (uo ard vo) through
the nozzle. Since the one-dimensional sclution is valid for all (subsonic,
transonic and supersonic) nozzle flow regimes, the present solution will also be

valid for all nozzie flow regimes. The one-dimensional throat boundary conditions

are that
ao(O) = 1 (2-28)
al(O) = 0 (2-29)
for both planar and axisymmetric rzzle flows, since
drw
—— = { -
o 0 {2-30)

(o)

at the nozzle throat.
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The first order equations are

du v wy du
2 1 _x-1 2 1 1} __4 1
(1'uo)az A= )( + 4 v+ YoV 37
ov wv
Y-1 2 2 y-1 o y-1 2 o _
(Zuoul + Y+1 o ’az (vo + 2'{+l ucul or + Y+l(2uoul + Vo b (2-31)

ov 31

"o _ 1 _ -
3%z 3r 0 (2-32)

From equations (2-23) and (2-32), it is easily shown that

6 = b_(2) b2(z)r2 (2-33)
where
da
. 171 -
b2 il (2-34)

From equatiors (2-20), (2-31), and (2-33), it can be shown that

v, o= bl(z)r + b3(z)r3 . (2-35)

where

, db
§1~%ﬂaﬂ+w+1x1-%%a)b =2abk—+$~w+nd] (2-36)

———
[
I

802)322 + (w+3)(1 - 1——-a )b - —§-'a a b

y+1 -1 2
da da
- o .yl ] 2[1:1.._._ -1 ] -
2a b?[dz + Y+1(m + l)a1 + a; v % + (1 + Y+1 w)a (2-37)

From the wall boundary condition [equation (2-21)], it can be shown that

dr 2
-b. r (2-38)

b, = (b + b T ;— dz 3w

1

The solution of the above equations defines the first order velocity components

(ul and vl) through the nozzle.
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Examination of equations (2-36) and (2-37) reveals that they are singular at the
nozzle throat (where a = 1). Thus, the above equations are algebraic at the throat

and cap be solved directly for bo(O), bl(O) and b3(0), yielding

1
b () = -3 (2-39)
o . _ L1/ _
b (0) = 4// : (2-40)
_ 1/ ya _
b (0) = 4,/ . (2-41)

for axisymmetric flows and

b (0) = -= (2-42)
o 6

b, (0) = --% oors) (2-43)

by (0) = ¢ /¥ (2-44)

. for planar flows. From equations (2-24) and (2-34) it can be shown that

(2-45)

N

by(0) =

for both axisymmetric and planar flows.

The above first order throat conditions are identical to those obtained
by Sauer(z) and Hall(l). The two results differ ¢ y from the throat plane,
however, due to the different fun~tional dependence of the coefficients on the

axial coordinate.

Examination of equation (2-16) reveals that it is also singular at the
nozzle throat (where u, = 1). Thus, the boundary conditions for all orders arc
set at the nozzle throat, and the various order throat conditions can be determined
directly. The fact that the boundary conditions are set at the throat for all
orders is mathematical proof that the nozzle throat plane s~ts the choked flow
through the nozzle.



Examination of equations (2-24), (2-34) and (2-37) shows that b2 depends
dzrw djrw d3rw
on and b, depends on Thus, if is discontinuous, the first order
2 3 3 3
dz dz dz
it
a-r rw
solution will be discontinuous. Thus, in general, if the wall derivative il
dz

is nonanalytic, the nth order sclution of the above ecuacions will be discontinuous.

The complete solution of the above equations will be araiytic only if the wn1l i=

analytic.

The second order equations are

Ju ov wv Ju

2| °Y2 x1oo2 (N2 2) 4 )

(l Yo 132 + (1 y+1. Yo 7 (ar + r 41 Vo ar
l_. ou avo
(Zuou2 + ul + 2 +f v vl)a/ [ZV vy + 1——(2u oY + Uy )]Br

u
+ ———(Zu us, +u 2 + 2v oV )———-+ 2u u. +‘I:l v z)s;l

; Y+1 1 ol v+l o
-1 ) -1 2) Wi . 4 )
( + o} Uy, 37 +l(Zuoul +v +-;:T Uy + u,v
MM,
9z or

From equations (2-35) and (2-47), it is easily shown that

U, = co(z) + cz(z)r2 + c‘}(z)r4

2
where db.
. = %
2 - 2 dz
. o 1%
4 4 dz
P From equations (2-20), (2-46) and (2-48), it can be shown that

2-7
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cl(z)r + c3(z)r3 + cs(z)r5 (2-51)

2
where
de da
- Hehe - [+ 0ean)
ll - ag ]dz (w+ 1)(1 - YL %o )cl = (ZaOr..c + b ) P + (1+m)al
dbo ]
+ 2aob0 [d_z__ + Y+l(1 4+ w)b (2-52)
2 Z . -1 2
(1 - a }E;_ + (w+ 3)(Q1 - %;z a_ )c3 - ?%I a_a,c,
da d
_ o, Y1 [Y -1 1_ ]
= Z(a c, + b b ) [dz + Y+1(l + w)a ] + 2alb1 Vil dz +(l + w)a
db2
Y+1(a b, + ab )d +2a b [dT Y+1(3 + w)b3]
db ] d
_ o 2[y-1 y=-1 . ] _ray
+ 2a b. [dz Y+l(l + w)b J 1 £Y+1 dz + (1 + Y+1 w,bl (2-53)
(1 T4 )d-_+ (w+5a- Y+l % ) T ¥ %6*1%
2. 193, y-1 928, -1
= (2a,c, +1,7) [dz Y+1(l + wa ]* 2a,b, [Y+1 FP e )31]
db
A —2 .Y_. ]
+ lab, +a bz)d +2ab, [dz + X123 + wp
+a)” [T 2 i SR L2 o, (2-54)
3) [y 4z 3] ]

From the wall boundary condition [equation (2-21)], it can be shown that

2 b 1 ""w _ 2 _ 4 _
¢y (co + T, + 2T )rw-E;- T st (2-55)
The solution of the above ejuations defines the second order velocity components
(u2 and VZ) tkrough the nozzle.
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As previously discussed, the above equations are singular at the throat

and can be solved directly to determine the second order throst cornditioms.

Thus,
10y + 57
¢, (0) = 288
28y + 93 /Y4l
¢, (0) 268 2
. (0) - by + 15
2\ 24
5 20y + 63 /y+1
30 = -5 2.
- 2y+9
¢, (0) %
= X +3 /y+l
c5(0) 9 2
— for axisymmetric flows and
. XY +30
¢, (0 770
3y + 195 /el
c; (0 1080 2
- _2Z2y+9
c,(0) = 18
_ _5v+21 /w1
c5(0) “ T /T2
- Xib
¢, (0) = 73

22y +75 /yh
360 2

c5(0)

for planar flows.

The above second order throat conditions are identical to those obtained
by Hall(l). Both the first and second order throat conditions are indi,~ndent

-~ of the nozzle shape and are thus universally valid for sll nczzle flows. The

2-9

(2-56)
(2-57)
(2-58)
(2-59)
(2-60)

~-61)

(2-62)

(2-63)
(2-64)
(2-65)
(2-<66)

(2-67)

solution away from the throat aepends on the nozzle shapz for all orders, however.



¢

The third and higher order equations can be similarly obtained.
The throat boundary conditions for these equations depend on the nozzle
shape, ard are thus not universally valid for all nozzle flows. The solutions
of these equations are polynomial in r of order 2n and 2n+l, respectively.
for u and v, Thus, studies of nozzle flows using numerical or integral tech-
niques which assume that the velocity components can be represented by polynomials
in r are m¢thematically equivalent to the present analysis and will have eriors

\
when terms ccataining higher powers of r in u and v are

h(3)

i
of the same order |
n+
|\R
neglected. The second order solution gZven by Oswatlitsc

does not contain terms
4 5, .
of r and r~ in his u,
© 1 . .
second order, but contains errors of order —3 due to neglecting these terms, This
p2
explains the discrepancy betweea Oswatitsch's and Hall's second order results

noted éy Hall(l). It is noted chat a number of previous analyses(4’5’6)

and Vs respectively. This sclution is thus not truly

have
utilized terminated polynomials in r of order 2n and 2n-1 for u and v, respectively,
and that these analyses are of inconsistent orde:, being of order n i{n u and n-1

in v.

Figures 2-1 and 2-2 show the. results of the present analysis for the flow
of air (y = 1.4) through axisymmetric and planar hyperbolic nnzzles having a
normalized throat wall radius of curvature of 5, Tables 2-1 through 2-4 tabulate
the velocity distribution along the axis and wall in these nozzles. In general,
the convergence of the solution is fastest in the subsonic region aud slowest in
the supersonic region. This is to be expected, since the deviation from one-
dimensional flow increases through the nozzle and is greatest in the supersonic

section.

Figures 2-3 through 2-11 show the first and sccound order throat wall
velocities, the throat axis velocities and the sonic point displacemeunts as a
function of the aormalized throat wall radius of curvature in axisymmetric
hyperbolic nozzles for flows with specific heat ratios of 1.2, 1.4, and 1.6".

The throat wall and éxis velocity variations are identical to Hall's results

since the two analyses have the same Ehroat boundary conditions. The sonic

point displacement differs, however,. and Hall's resalts are included for com~
parison. Also included on the velocity plots are second ofdgr rational

fraction approximations (sece Appendix B), which represent the probable true solution.

Examination of the figures reveals only a weak dependence of the transonic results

2-10 -
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on gamma. Comparison of t1e second order solution with the second order rational
fraction approximation shows that this snlution propbably represents the true
solution quite accurately up to normalized tbroat wall radii of curvatures of three,
and gives reasonable estimates of the icansonic flow conditions up to normalized
throat wall radii of curvatures of two. For a normalized throat wall radius of
curvature less than one, the second order solution predicts that the throat axis
velocity is supersonic, which is physically imposisible. It is concluded that use
of the second order solution should probably bte limited to normalized throat wal?l

radii of curvatures greater than two.

R

T



Table 2-1. Axis Velocity in an Axisymmetric
Hyperbolic Nozzle (y = 1.4, R = 5)

x Y1 “1..%
v uo uo +-R— uo+§-'+°1'{—2'
-1.0 0.6252 0.6231 0.6235
-0.5 0.8011 0.7772 0.7821
~0.4 0.3396 0.8106 0.8166
~0.3 0.8789 0.8446 0.8517
-0.2 0.9188 0.8793 0.8874
-0.1 (.9593 0.9144 0.9235
0.6 1.0000 0.9500 0.9599
J.1 1.0408 0,9858 0.9964
0.2 1.0818 1.0219 1.9330
0.3 1.1221 1.0579 1.0695
0.4 1.1622 1.0940 1,1057
Q.5 1.2017 ' 1.1298 1.1416
1.0 1.3858 1.3024 1.3123

Table 2-2. Wall Velocity in an Axieymmetric
llyperbolic Nozzle (y = 1.4, R = 5)

x ! b
;; uo ) uo -i-i—- uo +i— +;2-
-1.0 0.6252 0.6328 0.6295
-0.5 0.8011 0.8206 0.8262
-0.4 0.8396 0.8737 0.8692
-0.3 0.8789 0.9175 0.91Z8
~.2 0.9188 0.9617 " 0.9569
~0..= 0.9593 1.0059 1.0011
0.0 1.0000 . 1.0500 1.0452
0.5 1.0408 1.0936 1.0888
0.2 1.0816 1.1364 - 1.1316
0.3 1,1221 - 1.1783 . 1.1734
C.4 1,1622 © 0 1.2189 Do - 1.2140
0.5 1.2017 1.2581 _ 1,2532
1.0 1.3858 1.4290 1.4242
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Table 2-3.

Axis Velocity in a Plapar

Hyperbolic Nozzle (Y= 1.4, R =5,
u u u
—“: u u_ + L u 4 L + 2
v 0 0 R 0 2
- i R
-1.0 0.7303 0.7260 0.726%
~C.5 5.85%6 0.840C4 0.8431
0.4 9.8861 0.8¢49 0.8681
-0.3 U.9141 0.8898 0.3934
-0.2 0.9425 0.9152 0.9192
-0.1 £.9712 0.9408 0.9451
0.0 1.9000 0.9567 n.9713
9.1 1.0287 0.9927 6.9976
0.2 i1.0577 1.0187 1.0239
0.3 1.0864 1.0451 1.0502
0.4 1.1148& 1.0712 1.0763
9.3 1.1428 1.0972 1.1023
1.0 1.2749 1.2230 1.2270
Table 2-4. Walil Velocity in a Planer
Hyperbolic Nozzle (Y = 1.4, R = 5)
x ! Y1 %
yE Y LR LR t3
R
-1.0 0.7303 0.7509 0.7454
-G.5 0.8586 J.9045 0.8985
-0.4 0.8861 0 9369 0.9311
-0.3 0.9141 0.9696 0.9639
-0.2 0.9425 1.0022 0.9967
-0.1 0.9712 1.0346 1.0293
w0 1.CG00 1.0667 1.0€15
v.l 1.0287 1.0981 1.6932
0.2 1.0577 1.1287 1.1240
0.3 1.0364 1.1584 1.1538
0.4 1.1148 1.1871 1.1826
0.5 1.1428 1.2145 1.2102
1.0 1.2749 1.3327 1.3286

-

2-13



——— ONE~-DIMENSIONAL SOLUTION
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h = 5
Vi o+ .22

Figure 2-1. Contours of Constant Speud in Axisymmetric Hype-bolic
Nozzle with Y= 1.4 and R = 5.
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Figure 2-2. Contours of foustant Speed in Planar Hyperbolic
Nozzle with Y = 1.4 and R = 5.
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Figure 2-3.
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as a Function of Inverse Normalized Throat Wall Radius
of Curvature, Y= 1.2.
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Figure 2-5.

Throat Wall Velocity in Axisymmetric Hyperbolic Nozzle

as a Function of Inverse Normalized Throat Wall Radijus

of Curvature,

Y= 1.67.
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Figure 2-7. Throat Axis Velocity in Axisymmetric Hyperbolic Nozzle
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Figure 2-8. Throat Axis Velocity in Axisymmetric Hyperbolic Nozzle
as a Function of Inverse Normalized Throat Wall Radius

of Curvature, Y= 1.67.
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3. UNCHOKED NOZZLE FLOWS

Since unchoked shock free nozzlie flows were of secondary interest during
this study, only the applicability of the previous analysis tc nozzle flows of
this type will be shown and the throat boundary conditions given. Since the
channel flow equations (see Appendix A) show that for unchoked (symmetric) fiows

2

_ w+ 1 y -1 .2} u* X
u = u¥ - 1 - Y F 1 u* ) T = u*Z + ... (3-10

2 Ry

at the nozzle threat, it is apparent that the axial nozzle coordinate x must be
normalized with respect to the distancej?( y* when analyzing unchoked nozzle
flows in order for the dimensionless axial velocity gradients to remain of order
one at the nozzle throat independent of the nozzle scale. Since the noczle
perpendicular to the axis is set by the throat half height y* for e11 nozzle
flows, it is apparent that the perpendicular coordinate y must be rormalized
with respect to the distance y* when analyzing unchoked nozzle flows. Thus
solutions of the equations governing the inviscid isentropic expansion of a
perfect gas through a convergent-divergent nozzle [equations(2-1) and{(2-2)]

should be sought in terms of the normalized coordinates

X
y* (3"2)

=2
r =
*
y (3-3)
rather than the x,y coordinate system for large values of the normalized
throat wal? radius of curvature when analyzing either choked or unchoked

nozzle flows. Thus the preceeding analysis is also valid for unchoked nozzle

flows.

Since the flow is symmetric, the throat boundary conditions for
unchoked nozzle flows are that the axial derivatives of the various order axial

velocity coefficients (ao, bo' DZ, etc.) are zero at the throat. It can be

simply shown from the equacrions in the preceeding section that the one-
dimensional, first order and second order unchoked throat conditions are

a (0) = a *
(o} o (3-4)
a; (0 =0
(3-5)



bl(O) =0 (3-6)

by(0) = 3 a* (3-7)

b,(0) =0 (3-8)

c,(0) =0 (3-9)

cy(0) =0 (3-10)
c.(0) =0 (3-11)
2

It is noted that unlike the choked flow case, the throat boundary conditions are
incompletely specified for unchoked nozzle flows. Physically this occurs because
unchoked nozzle flows are not unique, there being an infinite family of such

flows, the flow of interest being specified by an external coastraint, the nozzle
pressure ratio. This lack of uniqueness appears in the one-dimensional equations
as the unspecifiea throat velocity a*o and in the equations governing the various

order coefficients by the fact that the axis coefficients (bo c , etc.) drop

’ 09
from the equations at the throat due to the symmetrical nature of the flow.

The uniqueness of the choked flow solution appears in the equations as a

singularity which is misszing in the equations for unchoked flows.

Since an external constraint must be specified in order to obtain a
unique unchoked flow solution, it is desirable to specify a constraint such as
to uniquely determine the throat conditions. The most natural such constraint
is that the mass flow through the nozzle equals the one-dimensional mass flow

through the nozzle. Thus specifying that

-1 %
g 2 3 O(r,O)ll(r,O) = w * — Y J
[t - dr =T, kl-f-l Q-y¥13 ) (3-12)
(o} p a

and expanding the integral as a power series in R_1 and equating the coefficients

nf the various powers of R—1 to zero yields the unique set of throat conditions

3-2



bo(O) T Tt @ (3-13)
* - g% *
¢ 0) - (0 + 1)2 ao { 16(3 aOZ) 302
0 16(w + 32 (u + 5) wW+1) (y+1) @ - z——;—i at?) (1 - ax?)
0+ 1) (3 -5a%%)
8(w + 5) : “%o -14
- ¥ 1 2 (3-14)
v 1 - a*
3L~ 2 ) (1~ a*’) + 2 "1—"-—((»+1) +————]a*2
- R o LY+1 vy + 1 0 }
_.Y_:.L. *2
1 y+1 ao
a* (0 +1) (3 - 5a%%)
1- ag
o 2 [ y-1 4 T L2
- - - * \ *
3 -5) Q-a¥) 2| 7 e+ 1)+ fad
- ] (3-15)
R A
1 v+ 1 &
(w+1) (3 - 5a%%)
a: { - o
AC Rl Tomracy sl ;
1 -~ a*
° 2
o 2 [ -1 4 ] a%
- - a% X -2
31 R y (1 ao ) +2 v+ 1 (w + 1) + 1 ‘
+ } (3-16)
s o R
1 Y+l s
where
for parabolic throats
o=(1 for circular arc throats (3-17)
-R for hyperolic throats

It is interesting to note that the second order throat conditions depend on the wall

shape.
nozzles.

orders, however.

Thus only the first order throat conditions are universally valid for all
The solution away from the throat depends on the wall shape for all

3-3



4, RELATIONSHIP TO HALL'S TRANSONIC SOLUT.<'.

It is evident from the previous discussion that the nozzle flow solution
presented in this report and Hall's transonic solution are closely related.
The exact relationcship between the two solutions can be easily seen by frans-
forming Hall's solution to the coordinrate system utilized in the present

analysis. Thus, in the r,z coordinate system, Hall's first and second order
y y

axisymmetric solutions are:

3

1 2

_ 2 1.1
u = 1+ ” 1z-&--—R [-—4-1-—27:] (4-1)
- 1‘. .]:. __.l.'/l___ll l’. AuE Y 1 3 -
v ,/R_{zr+ﬁ[ 7 2 r+4 2 r]} (4-2)

and

_ T2 3-2y 2.1. 1 5 /2
u—l+/Y+lz+3(Y+1)z +R[-4-8 T 2

1 5 .2 .1 10y+57 4y+15 2 . 2y+9 4
+(2+/~(+lz)‘]+R2[ 288 - 245 F tTg ] (4-3)

/1 / 2 2 1 1 /y+1 4y + 15
v =/ R {zr+ Y+1zr+R[(-4 2 " 12 z)r

1l /y+1  2y+39 3 1 . 28y + 93 y+ 1
rG/ T T Z)’]*Rz[ %8 7/ 3 F

_ 20y + 63 Y+1r3+Y;3 /x;lrS]} (4=4)

In the present analysis, the correspending solutions are
u = a (z) += [b (z) +b,(z)r’] (4~5)
o R "o 2 : :

v =/_%i- {al(z)r +% (b, (z)r + 53(2)1‘3]} : | (4-6)

4-1



and

=

.2 4
a = ao(z) +~%{bo(z) + bz(z)rzi ) [CO(Z) + Cz(z)r + 04(2)r HECEY))

£

v =/-Ij]5 {al(z)r + %{ [bl(z)r + b3(z)r3] + iz [cl(z)r + C3(z)r3

+ c5(z)r5]} (4-8)

Expanding the various functions of z in the above equations as power series ahout

the throat, the above solutions become

u =1+Y2+1z+1-1i['%' +-]é'r2] (4-9)
RV ERERS Sy =08 VEID)
and .
P o z+%ﬁ%zz+§[-;-g‘/ﬁg—: .
+G%'+ i - z) r2] + iz [ lOYZ;é57 _ 4YZZ 15 r2
v A2 | (4-11)

-/ 2 2 1., 1[3%*T _4y+15
v = {zr ﬁ/;—+ 7% ¢+ 3¢ A ) 12 z)r

1/ 3FI, 2y +09 3 ° 28y +93 /3 F
RAS T At ,")‘J’Rz[zss A e

At es [yl S, x3 [ FT 5y (4-12)

for axisymmetric flows. Comparison of Hall's solutiopé [ equations (4-1) through

Wi

(4-4) ] with the above equations reveals that Hall's solutions are contained in the
present solution and consist of expanding the various functions of z as power series
about the throat and terminating the expansions at the n - mth term where n is the
order of the solution desired and m is the order of the term in which the function
appears. Thus, Hall's solutions are cctually double expansion solutions, being
expansilons in both % and z. The 2z expanéion limi;s fhe valfdity of Hall's solution
to the transonic region near the throat (z<< 1). Figures 4-1 through 4-12 compare

Hall's results with the present solution for the flow of air through hyperbolic nozzles.
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mey be severely limited in their applicability.

In these figures, curve A refers to the present solution, curve B refers to

Hall's first approximation and curve C refers to Hall's second approximation.
Examination of the figures reveals that alcthougii both solutions are identical

at the throat, there are considerable differences (especially in the higher order
coefficients) away from the throat. This explains the difference in sonic point
location between the present analysis and Hall's noted in Figures 2-9 through

2-11, 1In particular, the sonic point displacement in the present anaiyszis

depends on the throat shape for all orders while Hall's first and second ordar
results are independent of the throat shape. Tables 4-1 through 4-3 compare Hall's
sonic point displacement results with those of the present analysis for hyperbolic,
parabolic and circular arc throat shapes as a function of~% for flows with specific
heat ratios of 1.2, 1.4 and 1.67. Examination of the tables reves®s that there

is a noticeable effect of wall shape on the soni~ point displacement. Comparison
of the first order and second order results betweer themselves reveals that Hall's
results do not fall between those for the three nozzle shapas. It would appear
that Hall's analysis is applicable only to‘regions very near the throat and that
his results away from the throat in the neighborhood of the sonic point are valid

only for values of the normalized wall radius of curvature of five or greater.

Comparison of Hall's results with the present solution for planar flows
reveals the same relationship between the two first order and second order
analysés as was shown for axisymmetric flows. Although the present third order
solution has not been completely worked out, comparison of Hall's third order
results with the third order throat boundary conditions obtained for the present
analysis reveals that the third order throat condiiion obtained from the two
aneiyses differ, In particular,4the third order throat conditions obtained for
the present analysis depend on the wall shape (whether paraboliz, hyperbolic or

circular arc) while Hall's results do not. Since the present sclution is uniformly

.valid for all nozzle flow regimes while Hall's solution is limited to the throat

region, it appears that Hall's third and higher order solutions may be of mixed
order in relationship to the present analysis. Resolution of this point is beyond
the scope of the current study b.c it would appear that Hall's third order results

4-3



Tablc 4-1. Sonic Point Displacement on Ax’ 3 of Axisymmetric
Nozzle as a Function of Inverse Normalized Throat
Wall Radius of Curvature (y = 1.2)

Circular Throat Parabolic Threat Hyperbolic Throat Hall's Results

%' %; from First Order Solution

0.1 0.0883 0.0883 0.0882 0.0829
0.2 0.1338 0.1337 0.1330 0.1175
0.3 0.1775 0.1767 0.1741 N,1436
0.5 0.2863 0.2746 0.2576 0.1854
0.8 L * 0.6059 0.3928 0.2345
1.0 __* __* 0.4804 0.2622

%; from Second Order Solution

0.1 0.0790 0.0791 0.072%4 0.07¢8
0.2 0.1033 0.1037 0.1057 0.2073
0.3 0.1121 0.1137 0.1195 0.1249
0.5 0.0970 0.103¢ 0.1215 0.1386
0.8 0.0311 0.0502 0.0717 0.1075
i.0 0.0065 10,2088 0.0135 0.0289

*# No solution obtained.



Tabl: 4-2. Sonic Point Dieplacement on Axis of Axisymmetric
Nozzle as a Function of Inverse Ncrnaalized Throat
Wall Radius of Curvaturz (y = 1.4)

Circular Throat Parabolic Throat Hyperbolic Throat Hall's Results
1 x* ,
= —  from First Order Solution
R 7
0.1 0.0524 0.0924 » 6.0922 0.u856
0.7 0.1403 0.1402 0.1393 0.1225
0.3 0.1866 0.1857 0.1827 0.1500
[
0.5 0.2049 0.29G7 0.2706 0.1936
0.8 & 0.6808 0.4094 0.2449
| _—
1.0 i * * 0.4953 0.2739
| "
§ ;;- from Second Order Solution
0.1 0.0824 0.0824 0.0828 0.0832
0.2 0.1070 0.1075 0.1038 ¢.1122
0.3 0.1150 0.1168 0.1234 0.1297
0.5 0.0962 0.1036 0.1229 0 1422
0.8 0.6370 0.0455 0.0659 0.1028
1.0 0.0021 0.0029 0.0045 0.0101

* No solution obtained.



Table 4~3. Sonic Point Displacement on Axis of Axisymmetric
Kozzle as a Functlon of inverse Normalized Throat
Wall Radius of Curvature (y = 1.67)

Circular Throat Parabolic Throat Hyperbolic Throat Hall's Results
% ?; from First Order Sol;Z;on
0.0877 0.0977 0.0975 0.0913
C.1488 0.1486 0.1476 0.1292
0.1987 0.1975 0.1939 0.1582
0.3308 0.3124 0.2876 0.2043
% __* 0.4309 0.2584
___* _* $5.5148 0.2889
?; from Second Order Sciution
0.0866 0.0866 0.n870 0.0876
.2 0.1116 0.1121 0.1148 0.1178
0.1181 0.1202 0.1279 J.1355
0.0943 ‘ 0.1021 0.1233 0.1461
0.0314 0.0389 0.0569 0.0944
~0.0036 -0.0046 ~0.0075 -0.0181

* No solution obtained.
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5., TWO-ZONE NOZZLE EXPANSIONS

Since most rocket eagines operate with a cool "barrier" zone near the wall
tc protect the thrust chamber from ths hot "core" gases, the exhaust gas expansion
through rockef engines can generally be represented as a two-zone expansion as
shown in Figure 5-1. 1In order to simplify the analysis, the barrier zone is
assumed to be confined to an annular ring. Thus the flow is axisymmetric in both
zones. (The analysis is also applicatle to two--dimensional nozzle flows in which
the outer zone is planar.) Although it will be shown that the equations governing
the two-zone expans:’ m reduce to those for a uniform expansion, the two-zone

solution will be derived separately.

The equations governing the inviscid isentropic expansion of two perfect

gases through a nozzle are

' 2 y-1 2)3u , | 2 _y-1 23v [, y=1 .2, 2] w
{l u - vo1 ¥ ox + ‘1 -v o 5y + [1 ) (u" +v )J y
4 3y
T Wy -0 (5-1)
v du
x 3y -0 (5-2)

in the inner zone and

1= - (1o AR 1 - L @y A

y+1 v+l ++1
- :—é—— 'G; %g- = 0 (5-3)
v+ v
vV du
ax 2y 0 (5-4)

in the outer zone where the velocities ha'e been normalized with respect to the
appropriate throat sonic velocity and w equals 0 or 1, depending on whether the
nozzle is planar or axisymmetric. As in the previous analysis, we shall seek
solutions of the above equations in nondimensional coordinates chosen from the
channel flow solutions such that the various velocity derivatives are independent
of the nozzle scale for large values of the normalized throat wall radius of

curvature. It can be shown from the two-zone channel flow solutions (see Appendix A)
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that for choked flows

e+l k x
u = 1+ T R y*+'” (5-5)
- Y fwl k x_ -
u l+.7 VL R y*+... (5-6)

at the nozzle throat where x is tho distance from the throat plane, y* is the
throat half height, R is the normalized throat wall radius of curvature and k is a
dimensionless constant of order one. Examination of these equations reveals that
as in the previous analysis, the axial nozzle coordinate x must be normalized with
respect to the distance fi-y* in order for the dimensicnless axial veleccity
: gradients to remain of order one at the nozzlie throat independent 2f ths nozzle

scale. Similarly, since the nozzle scale perpendicular to the nozzle axis is set
by the throct haif height y*, the perpendicular coordin:ave y shouid be normalized
with respect to the distance y*. Thus, solutions to the above eguations for large
values of the normalized throat wall radius of curve: & should again be sought in

terms of the normalized coordinates

1l x
z = |/ R y* {(5-7)

r = %*- (5-8)
rather than in the x,y coordinate system.

In the r,z coordinate system, the above equations become

—

/%(l-u l—"au (l-v —l-luzav+[l—ﬁ(u2+v2)]%’-

v+l v+1
du -
W =0 (c-9)
/1 3w
R 3z ~ or 0 (5-10)

in the inner zone and

f' (1 =1 '2) (1 '1 2) [1 - ;—E—i—(ﬁz + 3'2)]-;‘;’-‘2
( - _Y_+—“l 'Vg—: -0 (5-11)
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(5-12)
in the outer zome.
The boundary conditions on the axis and at the wall are
v(o,z) = 0 (5-13)
YR 1 (5-14)
olr . z) R dz
w’ Y

Since the flow angle and pressure mztch at the streamline dividing the two zones,

the boundary conditions at the Jdividing streamline are

v(rs,z) ) ;(rs,z) /T drs

ule,2) T T, .y Y R @ . (5-15)
s’
=
e (0L 11 - (e, % + vz, D)) B
X
- T — - y-1
= {0 - 2L G2 4 e, D) (5-16)
Y+1 s 8

where T, is the radial position of the dividing streamline.

The sonic pressure is equal in both zones (see Appendix A) since this
condition riaximizes the mass flow through the nozzle and the throat plane then
sets the flow through the nozzles. Therz are othar families of solutions to the
above equations for different pressure cunditions (such as the total pressure in
botn zones being equal). In these solutions, the flow is not set at the throat
plane but is set elsewhere in the flow system. These solutions (which correspond
to nozzle flows with controlled external bleed such as occur in jet engines or

ducted rockets) will not bs further considered in this report.
dr dr
Since u, u,~3;§ and‘a;E are 0(1) at the throat, v and v must both be

-1 .
O(R “/2). This suggests that the velocity components in both zones can be

expressed as expansions in inverse power of R for large values of the normalized
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throat wall radius of curvature, i.e.,

ul(r,Z) uz(r9z)

u = uo(r,z) + R + 5 + ... (5-17)
R
v, (r,z) va(c,2)
1 1" 2 (5-18)
v / 3 [vo(r,z, + z + 5 + ...]
R
- u,(r,2)  u,(r,z)
u = uo(r,z) + 3 + = 5 + ... (5-19)
R
_ T - v (r,2)  v,ir,z)
v = /i [vo(r,z) + R + > + ...] (5-20)
R

Substituting into equations (5-9) through (5-12) and equating powers of R-1

separztely gives the following sets of equations:

3u Yy wv
2 o _X-2 2 __0 ) - _
(1 - uo )82 + (1 v+1 uo ) (Br + r ) 0 (5-21)
auo
i 0 (5-22)

2124, v-1 2| |, oy 4 2y 1 4
L - n - -~ _-.+____ — c—— = ?‘ _
(1 Yo )82 + (1 v Yo (ar : r ) v+ Yo%0 3r by B (5-23)

an_l Bun
=ooTEm - % n2l (3-24)
in tue inner zone where
-1 _2 Buo 2 Y-1 ev -]
¢1 = (Zuoul + Vil v, )S-Z—-i- (vo ) gL ICH v Y+l(2u u, + v, J-—— (5-25)
du v
y=1 [ 1-1( 2)] 0
b = (2" uy ¥ “1 MR ALY il A Ry EERCSL N ] pes
(2 +u,? 42 v)wv°+(2u+l‘l 2) 2y
y+1 Utz T Y% Vo'1| ¢ Yot Y+l Yo )az
-1 ( 2,“"’1 4 ( ) g
( o + y+luu1)8r ‘Y‘H 2uu +v° +Y+1 u°v1+uv o™ (5-26)
and -
wv
o e - 22 (T T



— = 0 -
v (5-28)
. 3:1. 1 - a.‘—f- w;,,-‘ —_— 3: _—
R e i B Frabiee B i R SIS e
+1 +1
Mg Moo, a1 (5-30)
YA or

in the outer zone where

— —

- 3a . L _ %V - . _oyuv
% - gt e (R e ) B Eaa )2 e
1 ol 7+ © 0z Y+1 Y+1
4, (zuu +u2+2-Y—' ) [2vv + =1 233 2)]
1 —
Y+l
- _ Wy L - oy, . V.
4+-E;l(2u u, + ui + 2v°vl)——2-+ 2u uy +‘l—— )3 ( 2 "Y 1 o1 arl
v+ © g °T vy o o
+§.—-(2u Gl +;§) rl +-_—4— -\;;1 + u 1V )Br (5-32)
' ° +1 ' °

e e 9

The ubove system of equations are identical to those governing a uniform
expansion. Thus, the solution for the inner zore is identical to the solution
previcusly Jerived except that the dividing streamline boundary condition replaces
the wall boundary condition. As was shown earlier [equation (2-23)], the complete
solution of the above equatiuns for v is of the fcm

vo(r,z) = al(z)r + wats(z):n:'-l + (1 - w) as(z) (5-33)

wher the functions a3(z) and as(z) are identically zero in uniform expansions

and in the jrner zone. In the outer zone, however, a3(z) and gs(z) are not
identically zero but are determined from the dividing streamline boundary conditions.
Thus, the outer zone solutions contain additional terms dependent on a3(z) and

g (z) which do not appear in the inner zone soiutions. Since plaunar two-zone
expansions’were not of interest in the present study, only the axisymmetric solution
is given belcw. ' .
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Since the sclution in both zones 1is obtained as power series in Jnverse
powers of R, it is convenient to reduce the boundary conditions to a series of
conditions for the various order solutions. The axis and wall boundary conditions
are

vn(o,z) = 0 _ (5-34)

_ _
vn(rw,z) = un(rw,z oY (5-35)

By expanding the position of the dividing streamline (rs) in inverse powers »>f R,

i.e.,
r .(z) r_,(z)
r(x) = r_(2)+ LG 7 M (5- 16)

R R2

and noting that

. , 1 3u 1 [Su
u(rg,z2) ulrg,»2) + 35, O e (2)
¥ A R y2Z
§0 so
2
l13u 2
+ 7 3 rsl(z) + ..
ir |r ,z
so

1 auo
uo(rSO,z) + -i[ul(rSO,z) + 3T

du Ju

| 0 r;l(z)z
+ —= rsl(z) 4+ e

3 ] +004(5~37)

r z ar” |r z
SO’ >

4
rso,

(and similarly for the other velocity components), the first dividing streamline
boundary conditien [equation (5-15)] caa be rewritten in terms of the various order
solutions as

v (r, »2) = uo(ro,z)—”- - (?—38)



)
Vl(rso’z) + ) rsl(z) - [ul(rso’z) + 3 Ol rsl(z)]dzso
s0°” lrs o
dr
sl
+u (r ,z)dz (5-39)
Bvl 9 o Bzvo 9
VZ(ISQ’Z) tar r rsl(z) TS 7“'s?.(z) +3 3 2 1'sl(?)
SO’ So’ z rso)
aul ou
= [uz(rso,z) +‘é-;— rsl(z) + 3 r 2(2\
oo e
2
9 u du dr
1 "o 27 [ 0 1 sl
+ —— —
2 3r2 1.sl(z) }+ ul( 'so’z) + dr £ 1(7').\ dz
50’ so’
drs2
+ uo(rs o,z)d (5-40)
_ drso
vc'(rs 5Z) = uo(rso’z)dz (5-41)
_ a?m _ a?fo .’drSO
vl(rso’z) +_BTI,_ 2 rq(z) = [ul(‘r_sn’z) *ir Tl (z)sz
I-So’ : ISOsz
dr
+ uo(r ,z)dZSL {5-42)

ST

X
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o 1; ’ o o 1 O
\2(rso’z) M ] Iel‘z) + 2 l %2((”) t92 3 rs_(z)
'r ,z ir 2z 3r r .z
o) S0 so
a_l an
= / +___ —_
[uz r ,z) o ! rvl(z) + P rsz(z)
: y r 2
50 so
1 232;0 2 dr o — a;o
T rsl(z) !Iz._.’.[ul(r »2) +§— rql(z)]
ar |r ,z | ,Z
SG sc
dr .
- sZ

(5-43)

by equating inverse powers of R. oimilarly, by expanding as a power series anrd

equating inverse powers or R, the second dividing streamline boundary cordition

[equaticn (5-16)] can be rewritten in terms of the varioug order solutions as

—XT —
. v- - - Y-1
L [y xL 2R L _xly b
0z b= vt uo(rSO,Z) JJ { 2 1-= uc(rso’z)z-]}
+1
-1 du
- l _X=1 2] ~ - v o4 —9 ]
e 1 v ¢ (rso,z) {Zuo(rs "‘)[ul(‘so’z' + 3 . rsl(z)
SO’
+v (r ,z) }
)
— - - -1 du
Y [ -1 - 2 — - o
= —— |1-—ul(r ,z) {2u (¢ ,z)[u (r_ sz + 51
Y+1 41 0" so J n 80 1" " so dx irso’
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—_
(y+1)2

cee

-2
Nt S 2] . o)
[1 Y+l u (z, ,2) {ZLo(rSO,z) u (rg,,2) + 5;—1 rsl(z)]
r 4

2 -1
2 e y-1 \ZJ
+ vo(rso,z) ;- e} -1 - 1 uo(r v 2)

Sul 3u
. | .
{ 2uo(rso,z)[u2(rsc,z) + or i rsl(2} + 3r l rsz(z)
ir .,z r ,z
S0 50
2
9 u Ju
1 2
+.§ gl rsl(z) } + [ul(rs »2) 5—9 r 1{2)]2
ar |r ,z »2Z *
SO SO
3vo
+ 2v (r ,z)[vl(r yZ) +-:—-—i rsl(z)J}
T 02
Y -1 277%
e X [ _xlT ] o ["
(;41)2 [L = uo(rso,z) {Zuo(rso,z) ul(rso,z)
Ju 2
0 - 2
+ 3;—1 rsl(z)] + vo(rs yZ) }
Irso’
- - -1 du
- XL [; _xLc 2] = [— 1
) —u (r,,»2) {2u,(x_,2)|uy(r_,2) + 3 )
]
80
du 3%
o N o1 2
+ r (2) +5 —— r (z)]
o |, ,z 82 2 32 lr ,z sl
50 50
- 3_;| 2
+ [u (r ,z) + T— z)] 4+ 2v (r [_-
1 ’ 3 l ’ rsl( Vo( SO’Z) vl(rSO’Z)
80
v
— .
+ ar le(Z) ]}
yZ
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The boundary condition on the position of the dividing streamline is that
the ratio of mass flowe *'.cough the two zones be constant at the throat. This

condition can be expressed as

1 — _
j' 2-rp(r,o)u(r,o)dr 9
r (o) - 1L -r (o) -
0 _ p*a* so _l_[lﬂ; ? ~
r (o) = okax { . (0)2 R2 2 r (o) 2ﬂruj(r,o)dr
.[S 2wro(r,0)u(r,o)dr so 50
)
rso(o)
- 1%1._{ 21 ru (r,o)dr] + ...}
[¢} 1
= constant (5-47)

by expanding the irtegrals as a power series in R_l. Substituting for rs(O)

[equation {5-36)] and equating powers of R—l to zero yields

- -1/2

*
r (@ = I +—i‘:%’ii—] (5-48)
SO L 1-x phak
r . 70) = 0 (5-49)
sl
2 r_ (o)
r [1-r (0)7] [ v+1 [5°
r, (O = 20 7 S0 LXE-”g 2nrul(r,o)dr
'—+1}
g s " - -
2L W Zﬂrul(r,o)d-] (5-50)
SO
where'; is the fractior of the nozzle mass flow in the outer zone.
Equaticns (5-22) and (5-28) show that uo(r,z) and E;(r,z) are functions
of z alone. Thus,
u (r,z) = a (z) (5-51)
o o
u (r,z2) = a (2) (5-52)
o o
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Equations (5-21), (5-27) and (5-34) are satisgifed if vo(r,z) and ;;(r,z) are of

the form

vo(r,z) = al(z)r

;g(r,z) = ;i(z)r +.Zs(z)r_l

From the remaining boundary conditions [equations (5-35), (5-38),

I A - /c O\ - =Y JUS. -
(5-44) and {(5-48)]}, it is easily shown that

a dr
= 92 __S8°

a1 r dz

30
—_ - aO (r drw — dr )
al 2 2 w dz so dz

r -r

w sSO
— aorwrso__ ( drso drw‘
a4 2 2 \*w 4z~ Yso dz

r  -r

w S0

X 'lf
‘Y—
y+1 y-1 2 -1 v+l , -1 2

- f;{ u"1} = {5 i1- 5;1 u “1}

- -1/2
r, (0 = [1+ X £
l-x p¥ka*

Substituting the above results into equations (5-21) and (5-27) yields

de a dr
o2 o o X 2y 0 “so .
‘l 8 laz + "(1 y+1 ao r dz 0
80
_,da - o & dr dr
(1‘a§)dz°+2(1"-la§) 5 (rwdzw-r G =0
Y+1 L ’ 8v

(5-41),

which are the one-dimensional channel flow equations. The solution of the above

equations defines the one-dimensional velocity distribution (uo, Voo ;; and ;;)

5-11

(5-53)

(5-54)

(5-55)

(5-56)

(5-57)

(5~58)

(5-59)

(5-60)

(5-61)



and dividing streamline location (r ) through the nozzle. Si-ce the one-dimencional
solution is valid for all (subsonic, cransonic and supersonic) nozzle flow regimes,

the present solution will also be valid fcr all nozzle fisw regimes.

The first order equations are

Ju v v u
A ( _x=l o2y i1 1y 4 1
(l v )az 1 v+1 Yo ) 3z * 7 ) v+1 “oVo 3r
) L, 28 g2, e 13v, bu o 4 2 .
= tup * v+1 Vo }32 (‘o teympe uljar Y+l( Yo't T Ve il (5-62)
avo Bul
% a0 (5-63)
2179 Y- =2 i - o
T [ e
¢ y+1
— = Te1 -2 =2 T1-—1%% %
= 2uul+{—v §+\vo+2£---uula +-Y-— 2u°u1+v;’-;- (5-64)
y+1 ° Y+1 Y+l
v aI{l
-a—z—- — ?;— = 0 (5-65)
From equations (5-53), (5-54), (5-63) and (5-65), it is easily shown that
u, = b (z) +b,(z)r> (5-66)
1 o 2
— -— — 2 -
u, = bo(z) + bz(z)r + ba(z) n r (5-67)
where
da
« 11 5.,
b % 2T (5-68)
da
= 1% (5-
b " 2 (5-69)
_ 4'53
bl& = —-;— \5"'70)
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From equations (5-34), (5-62), (5-64), (5-0b) and (5-67), it can be shown

that
3 AN
vl = bl(z)r + b3(z)r (5-71;
vV, = b (2)r +b,()r> +b.(2) r in r + bo(z)r
1 1 3 5 7
+ 5.2 45 (! n . (5-72)
g2 1hEr e
where
db da
R - R P vt S - [0 Y-1 e
1 3, )dz + *(1 v+ % |P1 2abyam Y2 al] (5-73)
db
219Py _y=l_ 2. 8
(1 - A, )dz 4 - a )by - aad,
dag -1 2{ y-1 da, 2y ]
= 2ab, 7= +2 s L B e s SN (5-74)
db by - da - 1
_2 -1 — 2, — - —— -1 =
-3z a-a Ny + b = 2ab |+ 2 XLy
y+1 v+1
dz _ da. da
[ e - o - - day
+ 2a1a3[‘Ll dzo + f? L' - :;" aléa3 - _6 aay —-2-+ :ﬁ— aa, = (5-75)
+1 y+1 Y+1 y+1 © z vkl ©° z
db. -
[1-3%=2+4a - =a %, - 2 aas,
y+1 y+1
da - .- . da - .
= 1% —273-1 %% 27 =
= 2ab —24+2 X2l 74X + a, ! (5-76)
0°2 - dz L5, e 3 1
db — _ __ .da - .
[1-8f gt v2a-22ahs, « 2 b, =22t | (5-77)
Y+i z v+l
21 l-izoz)bg - %33 (5-78)
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- _ - ., da - _ _ da _
a1 - EFl a ~)b?l = 32 [;,1 dzo + E? al] + _ﬁ a_a, d23 _& ala32 (5-79)
v+l - y+1 v+l v+l v+1
From the remairing boundary conditions [equations (5-35), (5-39), (5-42), (5-45)
and (5-49)1, it czn be shown that
- . -_3 - -1, - -3 = -1
b1 w b3rw + b5 r, L1 r, + b7 r ~ + b9rw + bllrw n r
- - 2 = drw
= (bo + bzrw + bh n rw) Fre (5-80)
dr dr
3 _ 2 sl
blrso + b3rso + %1 T (bo + b2rso ) dz + 8, dz (5-81)
- = 3 . = -1 = _-3_ 7 -1
b]rso + b3rso + bSrso n L + b7rSo + b9rso + bll(z)rSo fn Teo
dr dr
- - - - 2 so , — sl /5.89)
+ (dl asr o )rsl (b + bero + b4 2n Lso) iz 8, 3z (5-82)
X - 2]-1[2a(b +b.r 9+ 2
y+1 v+1 & o 2k 4 Tgo @ ¢
R e S e
= —[1-+—a" [2a ( +b,r, +b, 2nr_ )
T+l 741 (o} o' o 2°80 4 80
-2 2, —= =2 _=2
+ & r o + 2a1a3 + 83" T, ] (5-83)
rsl(O) =~ 0 (5-84)

The solution of the above equations defines the first order velocity components

(ul’ Uiy -\;1 and '\71) and dividing streamline location (rsl) through the nozzle.

Examination of equatioms /5-73) through (5-77) reveals that they are singular

at the nozzle throat (where a = :o = 1),

Thus, the above equations are algebraic

at the throat and can be solved directly for the throat conditions as in the
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uniform expansion case, Thus,

where

b _(0)
b, (0)

B, =

C -

= B
o

1
= Z(y+1)B B,

1 2
= 4(Y+1)Bl

1—.= ~ _1l=
» 2(y-f-l)B1 (Bo-ZC

1’

1 =2
= 4(y+l)Bl

1 — .\2=3
= Te(rt” By

= Cl

1, - S
= 30rt1)B) C)

[}
o

2 _ -1/2
e 2+ 2 (L) G - 2 B
=)

(%)Bl

l=.4\32
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(5-85)

(5-86)

(5-87)

(5-88)

(5-89)

(5-90)

(5-21)

(5-92)

(5-93)

(5-94)

(5-95)

(5~96)

(5~87)

(5-98)

(5-99)

(5-100)



By = =By B (D Gl - 1- 2 r )+ LmnEia - r 5%
- st r PGB - 1 f) + 3503 1 2

E; = -‘%(?41)5? rsf - Ei n rso + { %J [%(y+l)Bi rsf + Bo]

C) = - (DB (LB - 2T, +1 5 )

The above first order two-zone throat conditions are ldentical to those

which would be obtained by a Sauer(z) or Hall(l) type transonic analysis for this

(5-101)

(5-102)

(5-103)

7 .
case - As discussed previously, the present solution and such a transonic solution

4ill differ away from the throat plane, however.

Examiration oi equations (5-23) and (5-29) reveals that they are also

singular at the nozzle throat (where u, = u = 1). Thus, the boundary

conditicns for all orders are set at the nozzle throat and the various order

throat conditions can be determined directly.

Examination of equations (5-56), (5-57), (5-69), (5-70), (5-76) and (5-77)

2 3 3
- - d r, - _ d r, d r,
shows that b2 and b4 depend on 2 and b, and b5 depend on 3 Thus, if 3

dz ; dz dz

is discontinuous, the first order two-zone solution will also be discontinucus.
d2n+1r

Thus, in general, if the wall derivative -—E;:iﬂ is nonanalytic, the nth order
dz

solutions for the above equations will be discontinuous. The complete solution

of the above equations will be analytic only if the wall is analytic.

The second order equations are
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Ju v v du
21 772 y-1 2\ 2,2 4 2
(l Y }Bz + {l v+1 Yo ar + T ) ~ ¥+ Yo'o or

av
128 4y + ul + 2 Y+1 v Vl) + 2v oV1 + (2u oYy + v ﬂ
. 1 2 3u1
Y+1(2u u, + Uy + 2v vl‘—-+ ‘Zu ul +~$;I-vo 37
I +(x724-7l:l-|| l—a—‘ﬁl’--&k-]-‘-{')n‘ .i.wz\:]-'-.L_L.... ..l_?::l.
, o T SR Totuer T yRLlYe"L T Yo Y+ %1 T ®1%l0r
: dv du
4
ks R R
z r
v, du,
(1-\12)—-—-0-(1 ) (Br r )_:ﬁ_uovo?r—z-
Y41 Y+1
du - v
(f— 52 11-*\0 {-- X=1 o7 L 2] o
2u u + 2 + (v v, + 1= (2u u, + )iz
’ o%2 T Y T4 o'1l3z LYo 1 T4 o 2 1/)3r
L Ylly== . =2 == Yo [ 1 =2\
+ —1i2u u, + uy + 2v v1)--+ {2u 1 +-§7-v e
w4 ©° ollr o 741 0102
e Y1~—\a;1 Y=l [y 2% 4= == u
v, + 2 N + == (Zu uy + vo);1~+-:r~ uovl + ulvo T
41 y#1' ° Y+l
9 °or
From equatiomns (5-71), (5-72), (5-105), and (5-107), it is eesily shown that

u, = co(z) + cz(z)r2 + ca(z)r4

T, = T (@) + Ty + TDr + (@) v

+ c (z)r ‘i r + c (z)(zn t) +C z(z)r
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&

A

v

where

| db,
= R et i
27 %&% | (5-110)
L db
CEEE T (5-111)
- y by g dby
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6 T @ (5-114)
db..
- 1% | ]
8T 2E (5-115)
db
= 1711 )
‘0% 23 _ (5-116)
b, |
v - 19 )
‘27 7% (5-117)

From equations (5-104), (5-106), (5-108), and (5-103), it can be shown that
= o ()1 + e (@) + o () (5-118)
v, = c. (z)r +'.E (z);:3 + c (z)r5 + c. (zirtn r c (z,r(in r:)2

1 3 5 AN N A4

—

’ C @rl+c (mrd+ s (@
“+ cll(z)r in r +‘c13(z)r + clS(z)r + "17(2)”

+ 6@ tn T+ Sy (A (i 0 + Ty tn e (5-119)
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b, _ B |
i [7"‘7 Yl bl] o (5-120)
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From the remaining Boundary conditions [equations (5-34}. (5~4B); (5-43), (5-46)
and (5-50)], it is found that
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where the terms on. the right-hand side of equation (5-138) are evaluated at the

throat (z = 0),

The sdlution of

J
PN

the above equations defires the second order velocity

components (uz,’ 20 u2 and v2) and dividing streamline location (r 2) th;ough

the nozzle.

As previously di
throat and can in prinv

| ‘
conditione. This has b

solution of the above e
the solution of twenty-

It 18 noted that

scussed, the ahove equacions are singular at the nozzle '
iple be solved directly to determine the second order throat
een done numerically in the present ntudy, sinee direct
quations for the second order throat conditions requirea .
six linear algebraic equations.

both. the first and second order two-zone throat conditions

are independenc of the nozzle shape and are thus univcrlally applicable to all L

two-zone nozzle flows.
shape for all ordera, h
.. ditions depen& on the n

Figures 5-2 and
“analysis for a typical
with a normalized throa
Zone .properties were ch
with Aerozine - SO/N2 4

The solution away from the throat depends on the nozzle
owever. The third and higher order two~zone throat con-
ozzle shape as in the uniform expansion case.

5-3- show the second order results of the. present _two-zone
'barrier' cooled rocket engine having a hypetbolic nozzle
t wall radius of curvature of 5. The innor and outer .
osen as representative of an ablntivc engina operating

at an overall enginé mixture ratio of 1.6, in which o

twenty percent of tho propcllnnt mass flow is dilchltgld through a barrier zone
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dimenaional erosion. Exeninatzonﬂof the figuresﬁshows thst while tho constsnt
- pressure lines are continuous thtough the nozzle (es required by the dividing

streamline boundaryrcondition), the constant Mach lines abe diﬁcontiﬂuous soross :
the dividing streamline,(except the sonic (M - ]) liné,rwhich is continuous.

Figures 5-4 and 5-5 ibow the second-order -constant pressure and constsnt Msch ,
number lines for the same engine operatinOrwithout a bsrrier zone- (uﬁi‘orm 1; 6

mixture ratio throughout)

Compsrison of the two sets of‘figures grapnicslly

11lustrates the difference between a two-zoneosnd uniform mixture expansion

Although the pressure distribution is sinilsr’

in the two cases, the Mseh‘number distributions ‘are_quite different except near

‘the sonic surfeces, which are nearly 1dentical.

" with 'barrier' cooling will be discusged in a later report.
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Figure 5-2. Contours of Constant Pressure in Two-Zone Nozzle Expansicn.
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Figure 5-3. Contours of Constant Speed in Two-Zore Nozzle Expansion,
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APPENDIX A. ONE-DIMENSIONAL CHANNEL FLOW EQUATIONS

A.l. DUniform Fxpansioas

The one-dimensional channel flow equation governing the inviscid isentropic

expansion of a perfect gas through a nozzie is

dy
_ ‘2) du ( _ -1 2} u wv_ o {A-1)
[1-"] &+ w+D 1 L = 0
where the velocity has been normalized with respect "o the throat sonic velocity
and w equals 0 or 1 depending on whether the nozzie is planar or axisymmetric.

At the nozzie throat,

2
= y* X +..
V, =y* [ 1+ s ] (A-2)
dyw . X +

By substituting the above expressions into equation (A-1), expanding u as a

power series in x and equatiag powers of x, it can be shown that

w +1 L x
u=1 *R/Y T 1 R §* + ... (8-4)
for choked flows and
O 0 2 S R i | *2) u* X -
u=u 5 (l ) u 3 +... (A-5)

1~ u* Ry*z

for unchoked flows (u* < 1). The above equations are equations (2-3) and {3-1)

in the text.



A.2, Multistream Expansions

Consider a rocket engine in which two fixed quantitiles of propellant of
different mixture vatio are injected into a finite contraction ratio (zc) chamber
in such a manner that they burn and expand through the nozzle without mixing. The
one-dimensional channel flow relationships governing the inviscid isentropic

expansion of two perfect gas streams through a nozzle are

wy 1 qp (2 { I p ;1
- S AN S b P11 = (o1 Y ‘A-
m o= AP/ JTRT (P |- 13 } a-6)
(o] - (64
and -
- -1
— 2/y
- e o— ] —
w o= AP /= :1'{‘3— l-[‘i—] Y } (A~7)
1 RT 'P P
s} (o] 0

where the pressure in both streams is equal throughout the nczzle. Applying the
above mass flow relationships at the chamber and throat, it is found that

P 2/y p X
- 2y 1 { ¢l el y
. Acpo/y-l TN [1 - (p | } (A-8)
[o] o (o]
Y=-1
- - - P Iy P =
e N -
y~1 RIO Po Po
///; 1 (% 2/7{ pt.l:l
= T S —t— —— - —— Y -
m Alo/ T-1RT (P ) 11 (p J (A-10)
(o]} (o] o]
_ o JiT 1 B2y Pti:—l
m o= K7 /B2 - [ Y (A-11)
o — —— -~
v-1 RTo Po o

The pressure ratio function appearing on the right-hand side of the above equations
monotonically increases as the pressure ratio decreases, reaching a maximum at

the sonic pressure ratio. Thus for fixed mass flows through the two streams,

A-2




P P
2quations (A-10) and (A-1li) show that AT and A P_ are minimum wheo. ;L and —=
- - by
. o h
- _\‘_' o
. -
. . 2 \v-1 2 \y-1 .
are the sonic pressure ratios, (—;EO and (—) , respectively. Since for
Y 1
by p
fixed mass flows thLrough the twc streams, At and At ave & minimum when‘-l;-ti and‘:;
o P
o
= Pt Pt
are the sonic pressure ratios, then 2, and v, are alsc s minimum whan~§—-and —
0 Po
are the sonic pressure ratio.
Since the total flow area equals the nozzle ares,
A +A = ¢ A* (a-12)

ejuations (A~-8), (A-9) and (A-12) may be solved for the contraction ratio,
yielding

£ = D
C
2/Y L-—ln'l
2y 1 (Ee Pe ¥ J
AR/ 1T a3 -6d
(o] (o] (o]
N =
I T
v, /EL(Z) e (a1
vy-1 RT_'P P

Examination of this equation reveals that the pressure ratio fuactions on the
right-hand side of the equation will be maximum when Po and 3; are minimum for
fixed mass flows through the two streams and fixed engine geometry (contraction
ratio). Since these functions monotonically increase as the pressure ratios

P P
;3 and :?-decrease, it is concluded that the engine (static} chamber pressure, Pc‘

c P
0

will be & minimum when Po and ?; are a minimum, Since th'. engine will operate at

A-3



minimum chamber pressure in the absence of external influences on the flow througn

the nozzle {such as secondary injection ahead of the throat, etc.), it 1s concluded
P P
that at the throat, gs'and :; are the sonic pressure ratios for fixed mass flows
0 P
(@)
through the two streams. Thus the sonic points in the two streams coincide and
are located at the nozzle throat. Siuce the sonic pressures in the twce streams
are equal, the total pressures jin the two streams are unequal unless the tw: streams

are identical (y = ?), their ratio heing

P P P 1

ol Y-
:0_ = :.—t'i;g' (:%-,Y l/ ’%’ (A-14)
P P t Uy+1 Y

Generalizing the abov2 analysis to multigtream flows, it is concluded that:
e The sonic pressure of each stream is equal.

o The sonic point of each stream coincidea with the r>zzle throat
(for one-dimensional Zlows).

@ The total pressure of each stream is different (unless the streams
are identical).

o There does not exist o common engine (stream) stagnation pressure
for performance reference.

o The proper performance reference pressure is the sonic pressure
for multistream nozzle flows since it is the only reference yressure
common to all streams.

Thus Wrobel's* analysis of multistreszm rocket nozzle flowz is incorrect,
since it is based on thLe assumption that the total pressure in each stream 1is
equal and that there exists a common stream (englne) stagnation pressure for

performance reference.

*Wrobel, J. R., Some Effects of Gas Stratificution oan Choked Nozzle Flows,
AIAA paper No. 64-266, presented at the first annual AIAA meetirng,
Washington, D. C., 29 June to 2 July, 1965.



A.3. Two~Zone Expansions

The one-dimensional channel flow equations governing the inviscid two-zomne

isentropic expansicn of two perfect gases through a nczzle are

zu dy

(1 - uzld“ + (w+1) ‘1 - I;% u v, = - 0 (a-15)
in the inner zone and
- II
(1—u22“+(+1)(1 ”12) "
X Y+1 yW - yS
dy, dy .
mn S - -
(yw T Vg dx 0 (A-16)

in the outer zone where the velocitiec bhave been normalized with respect to the
appropriate throat sonic velocity and w equals O or 1 depending on whether the
nozzle and the two zones are planar or axisymmetric. Since the sonic points of

botl. streams coincide with the nczzle throat,

2
vy, = ¥l ==+ (A-17)
s 2R_y*
dys X

o R v + ... (A-18)
s

By substituting the above expressions and equations (A-2) and (A-~3) into equations

(A-15) and (A-16), expanding 4 and u as power series in X and equating powers of

x, it can be shown that

n whl y* 1 x_ -
u 1 +// Y+ Y: Rs o + .ue (A-19)

w
T w14 /el y* [1*“’_3'_3._]x_+ (A-20)
— * L3N BN )
T+l y,,‘,m+1 _ ygw+l R Rs y



Since the pregsure and sonic pressures are equal in both zones of the nozcle,

-IT i
DI 25 QPR S N L 5 S e R :
L= [a-ma] - )] a-21;

Differentiating this expression it is fecund that

du du .
éx dx (A-22)
* X
Using this relationship and golving egaations (A-19) and (A-20) for R, it 1e
found that
wtl wtl wtl
2 ~ 13 - gk y*
R e |L XL’ S T . (A-23)
8 -2 v+l Lutl £l | y*
Y y y 8

Substituting the above expression into equations (A-19) and (A-20) it is found

that
wtl k x
u = 1+/ 1R yF + ... (A-24)
- X furlkx_ .
u 1+_; I Ry* T oo (A-25)
where ~1
2 gaotl _ pawtl ot
Kk y_oy+l 8 + 8 (L 26)
';;2 v+l &wtl y*w+1
s

it is noted that k is a dimensionless constant which varies between l§-£;£ and 1
and is thus of order one. Y yH
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APPENDIX B, RATIONAL FRACTION APPROXIMATIONS

Van Dyke* discusses the use of various transformations to improve the
convergence of perturbation expansions. Of particular interest in the current
analysis ig the use of rational fractinn approximections of such series. Consider

the garies

w(0,1) = 144 32812 %5 (B-1)
b 298R

which is the second order solution for the throat wall velocity in axisymmetric
nozzles. Since the neglected terms in the series are 0(—13), alternate rep-~
R

resentations of the sbove series may be considered which match the indicated
terms for large R but whose behavior for small R {for which the above series is

ill-behaved) is a better represcntation of the true solution,

Following Van Dyke*, the above geries can also be represented as

1+ 14y + 33

u(0,1) = 128 (B~2)

1y Sey + 15
72K

which, when.axpanded in inverse powers of R, matches the first three terms of

the above series for large R. The advantage of the above representation can be
seen by comparing the behavior of the two expressions as functions of R as shown
in Figure B-1l. Examination of the figure shows that the throat wall velocity
given by the first expression maximizes for R approximately ome , and indicates
that the throat wall velocity is subsonic for R less than approximately one-half,
which is physically impoesible. In the limit as R goes tc zero,.the first
expreasion goes to negative infinity. Thus, the first expresasion is clearly not
a good representation of the wall velocity for small R.

*Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press,
New York, 1964.
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Examination of the behavior of the second expression as a function of R
indicates that che throat wall velocity monotonically increases as R decreases,

izy I iz as R goes to zero. Physically, the wall velocity is

known to behave in this manner. Thus the rational fraction representation of

reaching the limit

the throat wall velocity is probably closely representative of its. trus behavior
for al’ values of R and can be used to approximately determine the accuracy of

various order solutions,

In a similar fashion, «t can bu shown that the rational fraction approxi-

mation for the throat axis velocity is

1+ 10y + 39

. 72R -
u(0,0) o I0v+ 57 (8-3)
72R

in axisymmetric nozzles., The above rational fractiorns were used for estimating

the accuracy of the varisus crder solutions in Section 2.
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RATIONAL FRACTION APPROXIMATIC‘"{;
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POWER SERIES SOLUTION 1
.C9 *
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Figure B-1l. Comparison of Power Series and Ratioral Fraction

Representation of the Throat Wall Velocity as a Function
of the Inverse Normalized Throat Wall Radius of Curvature,
Y = 1.4,





